СПРАВКА

о радиационной обстановке на территории Калужской области в 2020 году

Каткова М.Н., Полянская О.Н., Яхрюшин В.Н., Зубачева А.А.

Радиационную обстановку в Калужской области определяют вторичный ветровой перенос глобальных радиоактивных выпадений, обусловленных проведенными ранее ядерными взрывами, а также радиоактивных выпадений, обусловленных чернобыльской аварией. Дополнительно на локальном уровне прослеживается влияние радиационно-опасных объектов (РОО).

Радиационно-опасными объектами на территории Калужской области, эксплуатирующими ядерные реакторы и имеющими радиохимические лаборатории на территории области, являются ФГУП «ГНЦ РФ – Физико-энергетический институт им. А.И. Лейпунского» (далее – ФЭИ) и филиал ФГУП «Научно-исследовательский физико-химический институт им. Л.Я. Карпова» (далее – филиал НИФХИ), расположенные на территории г. Обнинска [1]. РОО г. Обнинска в процессе производственной деятельности осуществляют газо-аэрозольные выбросы в атмосферу, содержащие техногенные радионуклиды.

Кроме этого, в области имеются территории, загрязненные вследствие аварии на Чернобыльской АЭС (ЧАЭС) в 1986 г., расположенные в Жиздринском, Людиновском, Ульяновском, Хвастовическом, Думиничском, Кировском, Козельском, Куйбышевском и Мещовском районах. За 35 лет уровни загрязнения ¹³⁷Сѕ территорий Калужской области значительно уменьшились, в основном, за счет радиоактивного распада и миграции вглубь почвы. Количество населенных пунктов Калужской области, расположенных на загрязненных территориях на 01.01.2021 г. было следующим [2]:

- с плотностью загрязнения почвы 137 Cs менее 1 Ки/км 2 372;
- с плотностью загрязнения почвы 137 Cs от 1 до 5 Ки/км 2 185;
- с плотностью загрязнения почвы $^{137}\mathrm{Cs}$ от 5 до 15 Ки/км 2 5.

Радиационный мониторинг на территории Калужской области проводится Росгидрометом на стационарных постах наблюдения и с помощью маршрутных обследований путем отбора проб компонентов природной среды с их последующим анализом.

На стационарных постах проводятся наблюдения (рис. 1):

- за объемной активностью радионуклидов в приземном слое атмосферы путем радиоизотопного анализа проб аэрозолей, отобранных с помощью воздухофильтрующей установки (ВФУ) производительностью 1100 м 3 /ч, расположенной на территории высотной метеорологической мачты (ВММ). Пробы воздуха отбирают-

ся на два фильтра ФПП-15-1,5 (для улавливания аэрозолей) и СФМ-И (для улавливания радиоактивного йода в молекулярной форме) с экспозицией одни сутки;

- за радиоактивностью атмосферных выпадений путем радиоизотопного анализа проб, отобранных с суточной экспозицией с помощью горизонтальных марлевых планшетов без бортиков площадью 0,3 м², установленных в пяти пунктах (Жиздра, Калуга, Малоярославец, Обнинск, Спас-Деменск);
- за мощностью амбиентного эквивалента дозы гамма-излучения (МАЭД) в семи пунктах (Жиздра, Калуга, Малоярославец, Мосальск, Обнинск, Спас-Деменск, Сухиничи) с помощью дозиметров ДГДМ, ДРГ-01Т, ДРГ-01Т1, ДБГ-06Т, ДКГ-02У.

Рис. 1. Стационарные посты наблюдения СРМ Росгидромета на территории Калужской обл.:

- наблюдения за γ-фоном;
- отбор проб атмосферных выпадений;
- наблюдения за атмосферными аэрозолями (ВФУ).

Отбор проб атмосферных выпадений и измерения МАЭД в пунктах Жиздра, Калуга, Малоярославец, Мосальск, Спас-Деменск, Сухиничи проводит ФГБУ «Калужский центр по гидрологии и мониторингу окружающей среды» (Калужский ЦГМС), являющимся филиалом ФГБУ «Центральное межрегиональное территориальное управление по гидрометеорологии и мониторингу окружающей среды (Центральное УГМС), в г. Обнинске – Институтом проблем мониторинга окружающей среды (ИПМ) ФГБУ «НПО «Тайфун».

Суммарная бета-активность (Σβ) суточных проб атмосферных аэрозолей и выпадений, отобранных в г. Обнинске, анализируется в аккредитованной лаборатории ИПМ, а

проб выпадений, отобранных в пунктах Жиздра, Калуга, Малоярославец, Спас-Деменск, – в радиометрической лаборатории Калужского ЦГМС.

Гамма-спектрометрический анализ проб атмосферных аэрозолей и выпадений, отобранных на территории Калужской области, проводится в лаборатории ИПМ. Объединенные за месяц пробы, отобранные в г. Обнинске (наличие РОО) и в п. Жиздра (загрязненная в результате аварии на ЧАЭС территория), измеряются ежемесячно, объединенные пробы выпадений по трем пунктам Калужской области, расположенным на не загрязненных территориях (Калуга, Малоярославец, Спас-Деменск), – ежеквартально.

Радиохимический анализ (содержание ⁹⁰Sr и изотопов плутония) объединенных за квартал проб атмосферных аэрозолей, отобранных в г. Обнинске, проводится лабораторией ИПМ.

По данным Калужского ЦГМС за 2020 г., среднемесячные и среднегодовые значения МАЭД на территории области не выходили за пределы колебаний глобального гаммафона и изменялись от 0,10 до 0,14 мкЗв/ч и от 0,10 до 0,13 мкЗв/ч, соответственно. Максимальные среднесуточные значения МАЭД изменялись в пределах от 0,12 до 0,20 мкЗв/ч. Максимум наблюдался в марте в Калуге.

Таблица 1 Среднемесячные (c) и максимальные суточные (м) значения выпадений (P) и объемной Σβ (q) в воздухе на территории Калужской области.

Пункты		Месяцы									2020 -	2010 -			
наблюдения		1	2	3	4	5	6	7	8	9	10	11	12	2020 г.	2019 г.
	Р, Бк/м²-сутки											Сумма, Бк/м²∙год			
Калуга	c	0,5	0,5	0,5	0,8	1,0	1,0	1,3	1,1	1,0	1,3	1,6	1,0	354	207
	M	1,0	1,5	1,9	1,7	3,9	2,7	6,9	2,7	1,9	2,8	3,4	2,3		
Малояросла-	c	0,5	0,6	0,6	0,9	1,4	1,3	1,5	0,8	0,9	1,1	1,4	0,7	357	188
вец	M	1,9	1,9	2,2	1,9	6,6	6,6	9,0	2,2	6,6	3,4	3,3	1,5		
Обнинск	c	0,8	0,7	0,7	0,8	1,2	1,2	1,3	0,8	0,7	0,9	1,0	1,3	348	295
	M	4,2	1,7	2,4	2,1	6,2	3,5	6,0	2,9	2,0	3,5	3,1	3,5		
Жиздра	c	0,6	0,5	0,6	0,8	1,2	1,0	1,1	0,8	0,9	1,1	1,1	0,7	318	240
	M	1,5	1,6	2,1	3,0	5,6	4,7	2,7	2,3	3,1	4,2	4,6	1,8		
Спас-Деменск	c	0,5	0,6	1,0	1,0	1,8	1,5	2,0	1,0	1,4	1,4	1,2	1,2	446	219
	M	1,2	1,4	3,8	2,4	6,2	6,7	7,1	4,4	8,4	4,6	3,2	2,2		
		$q, 10^{-5} \mathrm{Б} \kappa / \mathrm{M}^3$									Сре	еднее			
Обнинск	c	19	15	23	18	19	27	21	24	32	53	32	64	29	24
	M	67	28	54	31	35	55	60	52	82	91	126	164		

Суммарная бета-активность ($\Sigma\beta$) радиоактивных выпадений в 2020 г. на территории области не выходила за пределы фоновых колебаний (см. табл. 1) [3].

Таблица 2

Месяц	Обнин	ск, Бк/м ²	-месяц		нальный :/м²∙кварт		Жиздра, Бк/м ² ·месяц			
	2020	2019	2018	2020	2019	2018	2020	2019	2018	
Январь	0,1	< 0,1	< 0,09				< 0,1	< 0,1	0,29	
Февраль	0,1	< 0,1	0,27	0,065	0,045	0,026	< 0,1	< 0,1	0,16	
Март	< 0,1	< 0,1	< 0,01				< 0,1	0,26	0,11	
Апрель	0,73	< 0,1	0,05				0,5	0,21	0,13	
Май	0,15	< 0,1	0,039	0,32	0,14	0,14	0,4	0,41	0,2	
Июнь	< 0,1	0,12	0,11				0,18	<0,3	0,108	
Июль	0,1	0,1	0,068				0,47	0,34	0,32	
Август	0,12	0,21	< 0,02	0,15	$_{0,12}$	0,14	0,37	0,43	0,18	
Сентябрь	0,11	< 0,14	0,086				< 0,1	0,22	0,25	
Октябрь	< 0,1	0,18	< 0,05				< 0,1	0,25	0,62	
Ноябрь	< 0,1	0,11	<0,053	0,10	<0,04	0,094	< 0,1	0,14	0,039	
Декабрь	< 0,1	< 0,1	<0,055				<0,1	<0,09	< 0,1	
Сумма за год, Бк/м ² ·год	1,9	1,5	0,90	0,64	0,35	0,40	2,6	2,9	2,5	

¹⁻ среднее по трем пунктам: Калуга, Спас-Деменск, Малоярославец.

В атмосферных выпадениях из техногенных радионуклидов регистрировался только ¹³⁷Сs. Фоновые выпадения ¹³⁷Сs по Калужской области, полученные в результате анализа проб, объединенных по трем пунктам (Калуга, Малоярославец и Спас-Деменск), расположенным на не загрязненной территории, в 2020 г. увеличились в 1,8 раз по сравнению с прошлым годом и составили 0,64 Бк/м²·год (см. табл. 2 [3]) и в 3 раза превышали средневзвешенное годовое значение выпадений ¹³⁷Сs для не загрязненной в результате Чернобыльской аварии Европейской территории России в 2019 г. (0,21 Бк/м²·год) [3].

В Обнинске годовые выпадения ¹³⁷Cs в 2020 г. были в 3 раза выше уровня региональных фоновых выпадений (см. табл. 2). В Жиздре, расположенной на загрязненной после Чернобыльской аварии территории, выпадения ¹³⁷Cs в 2020 г. были на уровне ряда предыдущих лет и были в 4 раза выше фоновых выпадений по Калужской области.

Выпадения ⁹⁰Sr в Обнинске в 2020 г. были ниже предела обнаружения.

Выпадения природного радионуклида 7 Ве в Обнинске в 2020 г. изменялись в диапазоне 21 - 98,0 Бк/м 2 ·месяц, составив за год 555 Бк/м 2 . Годовые выпадения природного 40 К составили 36 Бк/м 2 , изменяясь от 1 до 8,1 Бк/м 2 ·месяц.

Среднегодовая объемная суммарная бета-активность радионуклидов в воздухе Обнинска (см. табл. 1) в 2020 г. находилась на уровне последних трех лет и составила $29\cdot10^{-5}$ Бк/м 3 , что в 1,5 раза выше средневзвешенной объемной $\Sigma\beta$ по территории Центра ЕТР в 2019 г. ($19\cdot10^{-5}$ Бк/м 3).

Из техногенных радионуклидов в приземном слое атмосферы Обнинска в 2020 г., как и в предыдущие годы, регулярно регистрировались 137 Cs, 90 Sr, изотопы плутония и 131 I (см. табл. 3 [3,4]).

Таблица 3 Среднемесячная объемная активность радионуклидов в воздухе г. Обнинска, Бк/м³ (данные НПО «Тайфун»)

Месяц	¹³⁷ Cs, ⋅10 ⁻⁷			²³⁸ Pu, ·10 ⁻⁹		²³⁹⁺²⁴⁰ Pu, ·10 ⁻⁹		⁹⁰ Sr, ·10 ^{−7}		¹³¹ I, ·10 ⁻⁵		⁷ Be, ⋅10 ⁻⁵	
ркээти	2020	2019	2018	2020	2019	2020	2019	2020	2019	2020	2019	2020	2019
Январь	3,8	5,2	6,8	0,6	1,1	0,6	0,6)		3,7	68	123	138
Февраль	3,7	1,7	3,0	0,5	0,4	0,5	0,5		0,33	1,3	247	86	85
Март	5,1	2,8	3,6	31	3,9	1,9	2,6	7,1ر		8,4	13	365	175
Апрель	18	5,3	5,3	7,7	7,6	4,4	38,5			23	29	212	377
Май	3,1	4,6	5,7	3,4	-	0,9	-		}0,6	4,1	28	243	439
Июнь	2,1	2,7	4,3	2,6	5,0	0,3	0,8)		247	25	340	390
Июль	1,8	1,7	2,3	-	0,6	-	5,1	-		14	11	307	224
Август	2,5	1,7	3,0	-	3,5	-	3,1	-	} o,7	14	59	260	244
Сентябрь	5,0	4,5	4,3	-	4,8	-	0,8	-		2,7	5,4	288	262
Октябрь	6,9	4,9	8,3	-	0,8	-	0,8	-		86	13	296	194
Ноябрь	4,0	3,0	3,7	-	1,6	-	1,2	-	} 1,2	20	123	130	175
Декабрь	4,0	5,7	4,3	-	2,1	-	нпо	-		42	73	182	153
Среднее	5,0	3,7	4,6	ı	2,9	-	4,9	-	0,69	39	58	236	238

^{- -} пробы в процессе анализа

Из таблицы видно, что среднегодовая объемная активность 137 Cs в Обнинске в 2020 г. составляла $5,0\cdot10^{-7}$ Бк/м³, что ниже уровня средневзвешенного значения для Центра ЕТР за 2020 г. $(6,3\cdot10^{-7})$.

Содержание 90 Sr в воздухе в первом полугодии 2020 г. (см. табл. 3) увеличилось в 3,4 раза в сравнении с тем же периодом 2019 г. Объемные активности 238 Pu и 239,240 Pu (см. табл. 3) с января по июнь 2020 г. колебались в диапазоне $(0,5-31)\cdot 10^{-9}$ и $(0,5-4,4)\cdot 10^{-9}$ соответственно. Загрязнение приземного слоя атмосферы Обнинска указанными изотопами плутония обусловлено, в основном, местным техногенным источником — ФЭИ. Среднегодовые объемные активности зарегистрированных радионуклидов были на пять—семь порядков ниже допустимой среднегодовой объемной активности (ДОА_{НАС}.) этих радионуклидов в соответствии с НРБ-99/2009 [5]: для 137 Cs ДОА_{НАС}. = 27 Бк/м 3 , для $^{239+240}$ Pu — $^{2,5\cdot10^{-3}}$ Бк/м 3 , для 238 Pu — $^{2,7\cdot10^{-3}}$ Бк/м 3 , для 90 Sr — 2,7 Бк/м 3 .

В 2020 г. в приземном слое атмосферы в центре Обнинска на высоте двух метров было зарегистрировано 100 случаев появления 131 I – (в 2019 г.– 118, в 2018 г. – 130 случаев за год). Среднегодовая объемная активность 131 I в воздухе Обнинска в 2020 г. составила 3,9·10⁻⁴ Бк/м³ (см. табл. 3), что в 1,5 раза ниже значения предыдущего года и на 4 порядка ниже допустимой среднегодовой активности для 131 I. Максимальная объемная активность 131 I наблюдалась 04-05.06.2020 и составляла 3 9·10⁻² Бк/м³, что на два порядка ниже допустимой среднегодовой активности для 131 I (ДОА_{НАС.} = 7,3 Бк/м³ в соответствие с НРБ-99/2009). Необходимо отметить, что количество случаев регистрации 131 I в центре города постепенно снижается.

Из естественных радионуклидов в приземном слое атмосферы Обнинска определялись 7 Ве и 40 К. Среднегодовая объемная активность 7 Ве в воздухе от года к году меняется в пределах одного порядка величины и в 2020 г. составляла 236·10⁻⁵ Бк/м³ (см. табл. 3). Объемная активность 40 К в 2020 г. изменялась в диапазоне (0,15–1,9)·10⁻⁵ Бк/м³ со среднегодовым значением $0.8\cdot10^{-5}$ Бк/м³.

В целом, в 2020 г. радиационная обстановка на территории Калужской области была стабильной. Наблюдавшиеся в 2020 г. уровни радиоактивного загрязнения окружающей среды техногенными радионуклидами в ближней 10-км зоне РОО Обнинска были значительно ниже существующих нормативов. Однако местные РОО оказывают влияние на загрязнение атмосферы Обнинска ¹³¹I, отсутствующим в составе глобального радиоактивного фона.

Список литературы

- 1. Распоряжение Правительства РФ от 14.09.2009 №1311-р с изменениями на 30 сентября 2019 года «Об утверждении перечня организаций, эксплуатирующих особо радационно опасные и ядерно опасные производства и объекты» [Электронный ресурс].—URL: http://docs.cntd.ru/document/902175518
- 2. Данные по радиоактивному загрязнению территории населенных пунктов Российской Федерации цезием-137, стронцием-90 и плутонием-239,240. Обнинск: ФГБУ «НПО «Тайфун», 2020. 224 с.
- 3. Радиационная обстановка на территории России и сопредельных государств в 2019 году. Ежегодник. Обнинск: ФГБУ «ВНИИГМИ-МЦД», 2020. –331 с
- 4. Радиационная обстановка на территории России и сопредельных государств в 2018 году. Ежегодник. Обнинск: ФГБУ «ВНИИГМИ-МЦД», 2019. 324 с
- 5. Нормы радиационной безопасности (НРБ-99/2009): Санитарно-эпидемиологические правила и нормативы. СанПиН 2.6.1.2523-09. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 100 с.