СПРАВКА

о радиационной обстановке на территории Калужской области в 2022 году

Каткова М.Н., Полянская О.Н., Яхрюшин В.Н., Зубачева А.А.

Радиационную обстановку в Калужской области определяют вторичный ветровой перенос глобальных радиоактивных выпадений, обусловленных проведенными ранее ядерными взрывами, а также радиоактивных выпадений, обусловленных чернобыльской аварией. Дополнительно на локальном уровне прослеживается влияние радиационно-опасных объектов (РОО).

Радиационно-опасными объектами на территории Калужской области, эксплуатирующими ядерные реакторы и имеющими радиохимические лаборатории на территории области, являются ФГУП «ГНЦ РФ – Физико-энергетический институт им. А.И. Лейпунского» (далее – ФЭИ) и филиал ФГУП «Научно-исследовательский физико-химический институт им. Л.Я. Карпова» (далее – филиал НИФХИ), расположенные на территории г. Обнинска [1]. РОО г. Обнинска в процессе производственной деятельности осуществляют газо-аэрозольные выбросы в атмосферу, содержащие техногенные радионуклиды.

Кроме этого, в области имеются территории, загрязненные вследствие аварии на Чернобыльской АЭС (ЧАЭС) в 1986 г., расположенные в Жиздринском, Людиновском, Ульяновском, Хвастовическом, Думиничском, Кировском, Козельском, Куйбышевском и Мещовском районах. За 36 лет уровни загрязнения ¹³⁷Сѕ территорий Калужской области значительно уменьшились, в основном, за счет радиоактивного распада и миграции вглубь почвы. Количество населенных пунктов Калужской области, расположенных на загрязненных территориях на 01.01.2022 г. было следующим [2]:

- с плотностью загрязнения почвы 137 Cs менее 1 $\text{Ku/km}^2 382$;
- с плотностью загрязнения почвы 137 Cs от 1 до 5 Ки/км 2 176;
- с плотностью загрязнения почвы $^{137}\mathrm{Cs}$ от 5 до 15 Ки/км 2 4.

Радиационный мониторинг на территории Калужской области проводится Росгидрометом на стационарных постах наблюдения и с помощью маршрутных обследований путем отбора проб компонентов природной среды с их последующим анализом.

На стационарных постах проводятся наблюдения (рис. 1):

- за объемной активностью радионуклидов в приземном слое атмосферы путем радиоизотопного анализа проб аэрозолей, отобранных с помощью воздухофильтрующей установки (ВФУ) производительностью $1100 \text{ м}^3/\text{ч}$, расположенной на территории высотной метеорологической мачты (ВММ). Пробы воздуха отбирают-

ся на два фильтра ФПП-15-1,5 (для улавливания аэрозолей) и СФМ-И (для улавливания радиоактивного йода в молекулярной форме) с экспозицией одни сутки;

- за радиоактивностью атмосферных выпадений путем радиоизотопного анализа проб, отобранных с суточной экспозицией с помощью горизонтальных марлевых планшетов без бортиков площадью 0,3 м², установленных в пяти пунктах (Жиздра, Калуга, Малоярославец, Обнинск, Спас-Деменск);
- за мощностью амбиентного эквивалента дозы гамма-излучения (МАЭД) в семи пунктах (Жиздра, Калуга, Малоярославец, Мосальск, Обнинск, Спас-Деменск, Сухиничи) с помощью дозиметров ДРГ-01Т1, ДБГ-06Т.

Рис. 1. Стационарные посты наблюдения СРМ Росгидромета на территории Калужской обл.:

- наблюдения за γ-фоном;
- ▲ отбор проб атмосферных выпадений;
- наблюдения за атмосферными аэрозолями (ВФУ).

Отбор проб атмосферных выпадений и измерения МАЭД в пунктах Жиздра, Калуга, Малоярославец, Мосальск, Спас-Деменск, Сухиничи проводит ФГБУ «Калужский центр по гидрологии и мониторингу окружающей среды» (Калужский ЦГМС), являющимся филиалом ФГБУ «Центральное межрегиональное территориальное управление по гидрометеорологии и мониторингу окружающей среды (Центральное УГМС), в г. Обнинске – Институтом проблем мониторинга окружающей среды (ИПМ) ФГБУ «НПО «Тайфун».

Суммарная бета-активность ($\Sigma \beta$) суточных проб атмосферных аэрозолей и выпадений, отобранных в г. Обнинске, анализируется в аккредитованной лаборатории ИПМ, а

проб выпадений, отобранных в пунктах Жиздра, Калуга, Малоярославец, Спас-Деменск, – в радиометрической лаборатории Калужского ЦГМС.

Гамма-спектрометрический анализ проб атмосферных аэрозолей и выпадений, отобранных на территории Калужской области, проводится в лаборатории ИПМ. Объединенные за месяц пробы, отобранные в г. Обнинске (наличие РОО), измеряются ежемесячно, объединенные пробы выпадений в п. Жиздра (загрязненная в результате аварии на ЧАЭС территория) и по трем пунктам Калужской области (Калуга, Малоярославец, Спас-Деменск) измеряются ежеквартально.

Радиохимический анализ (содержание изотопов плутония и ⁹⁰Sr), объединенных за месяц/полугодие проб атмосферных аэрозолей, отобранных в г. Обнинске, проводится лабораторией ИПМ.

По данным Калужского ЦГМС за 2022 г., среднемесячные и среднегодовые значения МАЭД на территории области не выходили за пределы колебаний глобального гаммафона и изменялись от 0,09 до 0,14 мкЗв/ч и от 0,10 до 0,13 мкЗв/ч, соответственно. Максимальные среднесуточные значения МАЭД изменялись в пределах от 0,10 до 0,20 мкЗв/ч. Максимум наблюдался в апреле и в августе в Калуге.

Таблица 1 Среднемесячные (c) и максимальные суточные (м) значения выпадений (P) и объемной Σβ (q) в воздухе на территории Калужской области.

Пункты наблюдения		Месяцы											2022	2021 -	
		1	2	3	4	5	6	7	8	9	10	11	12	2022 г.	2021 г.
		Р, Бк/м²-сутки											Сумма, Бк/м²·год		
Калуга	c	0,9	0,8	0,8	0,8	1,0	0,9	1,0	1,1	0,6	0,6	1,0	0,9	329	292
	M	2,1	1,5	1,3	1,4	1,7	1,6	2,1	2,2	1,2	1,7	1,8	1,8		
Малояросла-	c	0,7	0,7	0,6	0,7	0,8	0,8	0,6	0,8	0,9	0,8	0,6	0,6	256	329
вец	M	1,5	1,2	1,6	1,6	1,8	1,5	1,2	1,5	1,7	2,0	1,4	2,9		
Обнинск	c	0,8	1,1	0,8	1,1	1,4	1,3	0,7	1,1	1,2	1,2	0,8	1,4	392	347
	M	5,7	7,5	4,0	3,6	7,1	4,9	2,7	5,9	4,8	3,7	4,7	4,1		
Жиздра	c	0,7	0,7	0,6	0,8	1,0	0,8	0,7	0,5	0,5	0,5	0,6	0,9	256	219
	M	1,6	1,4	1,3	1,8	1,7	1,5	1,9	1,4	1,2	0,9	2,2	3,2		
Спас-Деменсь	СС	0,5	0,6	0,5	0,7	0,8	0,8	0,7	0,6	0,7	0,7	0,8	0,7	256	256
	M	1,5	1,3	1,1	2,2	1,5	1,2	1,6	1,7	1,2	1,6	2,1	2,2		
		q, 10 ⁻⁵ Бк/м ³										Cpe	Среднее		
Обнинск	c	16	14	25	17	24	23	20	41	23	21	28	40	24	29
	M	59	39	52	28	44	44	49	76	53	53	70	119		

Примечание: - нет данных.

Суммарная бета-активность ($\Sigma \beta$) радиоактивных выпадений в 2022 г. на территории области не выходила за пределы фоновых колебаний (см. табл. 1) [3].

В атмосферных выпадениях из техногенных радионуклидов регистрировался только ¹³⁷Cs. Фоновые выпадения ¹³⁷Cs по Калужской области, полученные в результате анализа проб, объединенных по трем пунктам (Калуга, Малоярославец и Спас-Деменск), располо-

женным на не загрязненной территории, в 2022 г. уменьшились в 1,3 раз по сравнению с прошлым годом и составили 0,34 Бк/м 2 -год (см. табл. 2 [3]), что в 1,7 раза выше средневзвешенного годового значения выпадений 137 Сs для не загрязненного в результате Чернобыльской аварии Центра территории России в 2021 г. (0,2 Бк/м 2 -год) [3].

Таблица 2 **Атмосферные выпадения** ¹³⁷Cs на территории Калужской области

Месяц	Обнин	ск, Бк/м ²	•месяц		нальный :/м²·кварт		Жиздра, Бк/м²-месяц			
	2022	2021	2020	2022	2021	2020	2022	2021	2020	
Январь	0,028	нпо	0,1					нпо	нпо	
Февраль	нпо	нпо	0,1	< 0,04	< 0,1	0,065	< 0,1	нпо	нпо	
Март	нпо	нпо	нпо					нпо	нпо	
Апрель	нпо	нпо	0,73		0,16	0,32	0,32	нпо	0,5	
Май	нпо	нпо	0,15	0,15				0,15	0,4	
Июнь	нпо	нпо	нпо					0,16	0,18	
Июль	нпо	нпо	0,1					0,20	0,47	
Август	нпо	нпо	0,12	0,12	0,10	0,15	0,37	0,16	0,37	
Сентябрь	нпо	нпо	0,11					0,13	нпо	
Октябрь	0,063	нпо	нпо					0,14	нпо	
Ноябрь	нпо	нпо	нпо	< 0,03	0,09	0,10	0,042	нпо	нпо	
Декабрь	нпо	нпо	нпо					нпо	нпо	
Сумма за год, Бк/м²·год	< 1,1	< 1,2	1,9	0,34	0,45	0,64	0,83	1,5	2,6	

 $^{^{1}}$ — среднее по трем пунктам: Калуга, Спас-Деменск, Малоярославец, нпо- ниже предела обнаружения, < 0.1 Бк/м 2 .

В Обнинске годовые выпадения ¹³⁷Cs в 2022 г. были на уровне 2021 г. (см. табл. 2). В Жиздре, расположенной на загрязненной после Чернобыльской аварии территории, выпадения ¹³⁷Cs в 2021 г. уменьшились в 1,8 раз по сравнению с 2021 г., но были в 2,4 раза выше фоновых выпадений по Калужской области.

Выпадения природного радионуклида 7 Ве в Обнинске в 2022 г. изменялись в диапазоне 21 –130 Бк/м 2 ·месяц, составив за год 659 Бк/м 2 . Годовые выпадения природного 40 К составили 43 Бк/м 2 , изменяясь от 1 до 14 Бк/м 2 ·месяц.

Среднегодовая объемная суммарная бета-активность радионуклидов в воздухе Обнинска (см. табл. 1) в 2022 г. составила $24\cdot10^{-5}$ Бк/м³, что в 1,2 раза ниже уровня 2021 г., но на уровне средневзвешенной объемной $\Sigma\beta$ по территории Центра ЕТР в 2021 г. (21 ·10⁻⁵ Бк/м³).

Из техногенных радионуклидов в приземном слое атмосферы Обнинска в 2022 г., как и в предыдущие годы, регулярно регистрировались 137 Cs, 90 Sr и 131 I (см. табл. 3 [3]).

Таблица 3 Среднемесячная объемная активность радионуклидов в воздухе г. Обнинска, Бк/м³ (данные НПО «Тайфун»)

Месяц	1:	³⁷ Cs, 10	-7	²³⁸ Pu, 10 ⁻⁹		²³⁹⁺²⁴⁰ Pu, 10 ⁻⁹		⁹⁰ Sr, 10 ⁻⁷		¹³¹ I, 10 ⁻⁵		⁷ Be, 10 ⁻⁵	
	2022	2021	2020	2022	2021	2022	2021	2022	2021	2022	2021	2022	2021
Январь	3,4	4,2	3,8	9,6	9,3	6,6	1,8))	61	72	116	188
Февраль	4,4	7,8	3,7	нпо	2,5	9,0	0,8			23	133	172	185
Март	2,3	2,6	5,1	198	7,7	21,1	1,3	0,7	0,4	9,1	9,7	265	134
Апрель	2,7	4,5	18	48,9	22,6	2,9	2,5	((44	68	267	163
Май	4,7	5,3	3,1	139	16,2	24,8	7,0			1,4	15	362	434
Июнь	3,4	4,2	2,1	86,0	7,9	10,8	3,6)	J	3,8	11	479	438
Июль	1,0	3,6	1,8	9,4	9,1	1,8	21,8]])	8,2	4,6	180	316
Август	5,8	1,0	2,5	9,6	11,7	2,1	11,7			5,6	41	435	228
Сентябрь	3,3	2,4	5,0	21,8	3,5	11,2	1,9	\ \-	>0,6	3,0	2,0	143	140
Октябрь	2,8	12	6,9	-	5,4	-	5,4			6,1	100	142	125
Ноябрь	2,2	8,0	4,0	-	22,4	-	2,8			3,7	1,1	151	131
Декабрь	3,5	5,7	4,0	-	13,0	-	6,5	,	,	116	28	212	184
Среднее	3,3	5,1	5,0	58*)	10,9	10*)	5,6		0,5	24	40	244	222

Примечание: - - пробы в процессе анализа; нпо – ниже предела измерения, < 1·10⁻⁹ Бк/м³; *) – за 9 месяцев.

Из таблицы видно, что среднегодовая объемная активность 137 Cs в Обнинске в 2022 г. составляла $3,3\cdot10^{-7}$ Бк/м³, что находится на уровне средневзвешенного значения для Центра ЕТР за 2021 г. ($3,6\cdot10^{-7}$). Содержание 90 Sr в воздухе в первом полугодии 2021 г. (см. табл. 3) увеличилось в 1,8 раза в сравнении с тем же периодом 2021 г. и стало в 1,3 раза выше средневзвешенного значения для Центра ЕТР за 2021 г. ($0,54\cdot10^{-7}$ Бк/м³). Объемные активности 238 Pu и 239,240 Pu (см. табл. 3) за 9 месяцев 2022 г. колебались в диапазоне (1-139) $\cdot10^{-9}$ и (1,8-24,8) $\cdot10^{-9}$ соответственно. Среднегодовые объемные активности зарегистрированных радионуклидов были на четыре—семь порядков ниже допустимой среднегодовой объемной активности (ДОА_{НАС}) этих радионуклидов в соответствии с НРБ-99/2009 [4]: для 137 Cs ДОА_{НАС} = 27 Бк/м³, для 90 Sr -2,7 Бк/м³, для 238 Pu $-2,7\cdot10^{-3}$ Бк/м³ и для $^{239+240}$ Pu $-2,5\cdot10^{-3}$ Бк/м³.

В 2022 г. в приземном слое атмосферы в центре Обнинска было зарегистрировано 108 случаев появления 131 I (в 2021 г. – 109, в 2020 г. – 100 случаев за год). Среднегодовая объемная активность 131 I в воздухе Обнинска в 2022 г. находилась на уровне предыдущего года и составила 2 4·10⁻⁴ Бк/м 3 (см. табл. 3), что на 4 порядка ниже допустимой среднегодовой активности для 131 I. Максимальная объемная активность 131 I наблюдалась 05-06.12.2022 и составляла 131 I. 131 I. Максимальная объемная ниже допустимой среднегодовой активности для 131 I (ДОА_{НАС.} = 7,3 Бк/м 3 в соответствие с НРБ-99/2009).

Из естественных радионуклидов в приземном слое атмосферы Обнинска определялись 7 Ве и 40 К. Среднегодовая объемная активность 7 Ве в воздухе от года к году меняется в пределах одного порядка величины и в 2022 г. составляла $244\cdot10^{-5}$ Бк/м 3 (см. табл. 3).

Объемная активность 40 К в 2022 г. изменялась в диапазоне $(0,28-1,7)\cdot 10^{-5}$ Бк/м³ со среднегодовым значением $0,83\cdot 10^{-5}$ Бк/м³.

В целом, в 2022 г. радиационная обстановка на территории Калужской области была стабильной. Наблюдавшиеся в 2022 г. уровни радиоактивного загрязнения окружающей среды техногенными радионуклидами в ближней 10-км зоне РОО Обнинска были значительно ниже существующих нормативов. Однако местные РОО оказывают влияние на загрязнение атмосферы Обнинска ¹³¹I, отсутствующим в составе глобального радиоактивного фона.

Список литературы

- 1. Распоряжение Правительства РФ от 14.09.2009 №1311-р с изменениями на 30 сентября 2019 года «Об утверждении перечня организаций, эксплуатирующих особо радационно опасные и ядерно-опасные производства и объекты» [Электронный ресурс].—URL: http://docs.cntd.ru/document/902175518
- 2. Данные по радиоактивному загрязнению территории населенных пунктов Российской Федерации цезием-137, стронцием-90 и плутонием-239,240. Обнинск: ФГБУ «НПО «Тайфун», 2021. 223 с.
- 3. Радиационная обстановка на территории России и сопредельных государств в 2021 году. Ежегодник. Обнинск: ФГБУ «ВНИИГМИ-МЦД», 2022. –341 с
- 4. Нормы радиационной безопасности (НРБ-99/2009): Санитарно-эпидемиологические правила и нормативы. СанПиН 2.6.1.2523-09. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 100 с.