СПРАВКА

о радиационной обстановке на территории Калужской области в 2023 году

Каткова М.Н., Полянская О.Н., Яхрюшин В.Н., Зубачева А.А.

Радиационную обстановку в Калужской области определяют вторичный ветровой перенос глобальных радиоактивных выпадений, обусловленных проведенными ранее ядерными взрывами, а также радиоактивных выпадений, обусловленных чернобыльской аварией. Дополнительно на локальном уровне прослеживается влияние радиационно-опасных объектов (РОО).

Радиационно-опасными объектами на территории Калужской области, эксплуатирующими ядерные реакторы и имеющими радиохимические лаборатории на территории области, являются ФГУП «ГНЦ РФ – Физико-энергетический институт им. А.И. Лейпунского» (далее – ФЭИ) и филиал ФГУП «Научно-исследовательский физико-химический институт им. Л.Я. Карпова» (далее – филиал НИФХИ), расположенные на территории г. Обнинска [1]. РОО г. Обнинска в процессе производственной деятельности осуществляют газо-аэрозольные выбросы в атмосферу, содержащие техногенные радионуклиды.

Кроме этого, в области имеются территории, загрязненные вследствие аварии на Чернобыльской АЭС (ЧАЭС) в 1986 г., расположенные в Жиздринском, Людиновском, Ульяновском, Хвастовическом, Думиничском, Кировском, Козельском, Куйбышевском и Мещовском районах. За 37 лет уровни загрязнения ¹³⁷Сѕ территорий Калужской области значительно уменьшились, в основном, за счет радиоактивного распада и миграции вглубь почвы. Количество населенных пунктов Калужской области, расположенных на загрязненных территориях на 01.01.2023 г. было следующим [2]:

- с плотностью загрязнения почвы 137 Cs менее 1 Ки/км 2 382;
- с плотностью загрязнения почвы 137 Cs от 1 до 5 Ки/км 2 176;
- с плотностью загрязнения почвы $^{137}\mathrm{Cs}$ от 5 до 15 Ки/км 2 4.

Радиационный мониторинг на территории Калужской области проводится Росгидрометом на стационарных постах наблюдения и с помощью маршрутных обследований путем отбора проб компонентов природной среды с их последующим анализом.

На стационарных постах проводятся наблюдения (рис. 1):

- за объемной активностью радионуклидов в приземном слое атмосферы путем радиоизотопного анализа проб аэрозолей, отобранных с помощью воздухофильтрующей установки (ВФУ) производительностью 1100 м 3 /ч, расположенной на территории высотной метеорологической мачты (ВММ). Пробы воздуха отбирают-

ся на два фильтра ФПП-15-1,5 (для улавливания аэрозолей) и СФМ-И (для улавливания радиоактивного йода в молекулярной форме) с экспозицией одни сутки;

- за радиоактивностью атмосферных выпадений путем радиоизотопного анализа проб, отобранных с суточной экспозицией с помощью горизонтальных марлевых планшетов без бортиков площадью 0,3 м², установленных в пяти пунктах (Жиздра, Калуга, Малоярославец, Обнинск, Спас-Деменск);
- за мощностью амбиентного эквивалента дозы гамма-излучения (МАЭД) в семи пунктах (Жиздра, Калуга, Малоярославец, Мосальск, Обнинск, Спас-Деменск, Сухиничи) с помощью дозиметров ДРГ-01Т1, ДБГ-06Т.

Рис. 1. Стационарные посты наблюдения СРМ Росгидромета на территории Калужской обл.:

- наблюдения за γ-фоном;
- ▲ отбор проб атмосферных выпадений;
- наблюдения за атмосферными аэрозолями (ВФУ).

Отбор проб атмосферных выпадений и измерения МАЭД в пунктах Жиздра, Калуга, Малоярославец, Мосальск, Спас-Деменск, Сухиничи проводит ФГБУ «Калужский центр по гидрологии и мониторингу окружающей среды» (Калужский ЦГМС), являющимся филиалом ФГБУ «Центральное межрегиональное территориальное управление по гидрометеорологии и мониторингу окружающей среды (Центральное УГМС), в г. Обнинске – Институтом проблем мониторинга окружающей среды (ИПМ) ФГБУ «НПО «Тайфун».

Суммарная бета-активность ($\Sigma \beta$) суточных проб атмосферных аэрозолей и выпадений, отобранных в г. Обнинске, анализируется в аккредитованной лаборатории ИПМ, а

проб выпадений, отобранных в пунктах Жиздра, Калуга, Малоярославец, Спас-Деменск, – в радиометрической лаборатории Калужского ЦГМС.

Гамма-спектрометрический анализ проб атмосферных аэрозолей и выпадений, отобранных на территории Калужской области, проводится в лаборатории ИПМ. Объединенные за месяц пробы, отобранные в г. Обнинске (наличие РОО), измеряются ежемесячно, объединенные пробы выпадений в п. Жиздра (загрязненная в результате аварии на ЧАЭС территория) и по трем пунктам Калужской области (Калуга, Малоярославец, Спас-Деменск) измеряются ежеквартально.

Радиохимический анализ (содержание изотопов плутония и 90 Sr), объединенных за месяц/полугодие проб атмосферных аэрозолей, отобранных в г. Обнинске, проводится лабораторией ИПМ.

По данным Калужского ЦГМС за 2023 г., среднемесячные и среднегодовые значения МАЭД на территории области не выходили за пределы колебаний глобального гаммафона и изменялись от 0,09 до 0,14 мкЗв/ч и от 0,10 до 0,13 мкЗв/ч, соответственно. Максимальные среднесуточные значения МАЭД изменялись в пределах от 0,13 до 0,20 мкЗв/ч. Максимум наблюдался в августе в Калуге.

Таблица 1 Среднемесячные (c) и максимальные суточные (м) значения выпадений (P) и объемной $\Sigma \beta$ (q) в воздухе на территории Калужской области.

Пункты		Месяцы										2022 -	2022 -		
наблюдения		1	2	3	4	5	6	7	8	9	10	11	12	2023 г.	2022 г.
		Р, Бк/м²-сутки										Сумма, Бк/м ² ·год			
Калуга	c	0,8	0,5	0,7	0,5	0,7	0,7	0,7	0,6	0,6	0,9	0,7	0,5	255	329
	M	1,6	1,9	2,2	1,5	2,6	2,5	1,9	2,1	1,7	2,6	2,2	1,4		
Малояросла-	c	0,7	0,4	0,7	0,6	0,6	0,5	1,0	0,6	0,6	0,7	0,7	0,5	219	256
вец	M	2,8	2,0	2,4	1,9	3,0	1,3	2,3	2,4	2,2	1,6	2,4	1,8		
Обнинск	c	0,7	0,7	0,8	1,0	0,9	0,8	0,7	1,0	0,9	0,8	1,0	0,6	301	392
	M	1,9	1,6	2,1	2,8	3,0	5,2	2,9	3,8	3,0	4,0	4,6	1,0		
Жиздра	c	0,7	0,3	0,6	0,6	0,5	0,6	0,6	0,6	0,7	0,8	0,5	0,5	219	256
	M	2,6	1,3	2,6	2,3	1,5	2,8	2,2	2,8	1,5	1,5	1,8	1,3		
Спас-Деменск	c	0,9	0,5	0,7	0,7	0,5	0,8	0,9	0,6	0,6	0,6	0,6	0,5	256	256
	M	2,7	1,9	2,2	2,7	2,7	2,7	2,2	2,7	1,1	1,9	2,1	1,7		
		q, 10 ⁻⁵ Бк/м ³										Среднее			
Обнинск	c	37	36	16	35	24	20	21	26	28	16	20	34	26	24
	M	91	214	27	54	45	55	46	54	59	49	35	79		

Примечание: - нет данных.

Суммарная бета-активность ($\Sigma \beta$) радиоактивных выпадений в 2023 г. на территории области не выходила за пределы фоновых колебаний (см. табл. 1) [3].

В атмосферных выпадениях из техногенных радионуклидов регистрировался только ¹³⁷Cs. Фоновые выпадения ¹³⁷Cs по Калужской области, полученные в результате анализа проб, объединенных по трем пунктам (Калуга, Малоярославец и Спас-Деменск), располо-

женным на не загрязненной территории, в 2023 г. уменьшились в 1,2 раза по сравнению с прошлым годом и составили 0,29 Бк/м 2 -год (см. табл. 2 [3]), что в 1,5 раза выше средневзвешенного годового значения выпадений 137 Сs для не загрязненного в результате Чернобыльской аварии Центра территории России в 2022 г. (0,2 Бк/м 2 -год) [3].

Таблица 2 **Атмосферные выпадения** ¹³⁷Cs на территории Калужской области

Месяц	Обнин	ск, Бк/м ²	-месяц		нальный :/м²∙кварт		Жиздра, Бк/м²-месяц		
	2023	2022	2021	2023	2022	2021	2023	2022	2021
Январь	0,035	0,028	нпо						нпо
Февраль	нпо	нпо	нпо	0,042	< 0,04	< 0,1	< 0,1	< 0,1	нпо
Март	нпо	нпо	нпо						нпо
Апрель	нпо	нпо	нпо						нпо
Май	нпо	нпо	нпо	0,087	0,15	0,16	0,34	0,32	0,15
Июнь	нпо	нпо	нпо						0,16
Июль	нпо	нпо	нпо						0,20
Август	нпо	нпо	нпо	0,13	0,12	0,10	0,51	0,37	0,16
Сентябрь	0,15	нпо	нпо						0,13
Октябрь	0,055	0,063	нпо						0,14
Ноябрь	0,52	нпо	нпо	< 0,03	< 0,03	0,09	0,32	0,042	нпо
Декабрь	нпо	нпо	нпо						нпо
Сумма за год, Бк/м²·год	1,6	< 1,1	< 1,2	0,29	0,34	0,45	1,3	0,83	1,5

 $^{^{1}}$ — среднее по трем пунктам: Калуга, Спас-Деменск, Малоярославец, нпо- ниже предела обнаружения, < 0.1 Бк/м 2 .

В Обнинске годовые выпадения ¹³⁷Cs в 2023 г. были в 1,5 раза выше, чем в 2022 г. и в5,5 раза выше фоновых выпадений по Калужской области (см. табл. 2). В Жиздре, расположенной на загрязненной после Чернобыльской аварии территории, выпадения ¹³⁷Cs в 2023 г. увеличились в 1,6 раза по сравнению с 2022 г. и были в 4,5 раза выше фоновых выпадений по Калужской области.

Выпадения природного радионуклида 7 Ве в Обнинске в 2023 г. изменялись в диапазоне 19 –151 Бк/м 2 ·месяц, составив за год 790 Бк/м 2 . Годовые выпадения природного 40 К составили 55 Бк/м 2 , изменяясь от 1 до 13 Бк/м 2 ·месяц.

Среднегодовая объемная суммарная бета-активность радионуклидов в воздухе Обнинска (см. табл. 1) в 2023 г. составила $26\cdot10^{-5}$ Бк/м 3 и была на уровне 2022 г., но в 1,3 раза выше средневзвешенной объемной $\Sigma\beta$ по территории Центра ETP в 2022 г. ($20\cdot10^{-5}$ Бк/м 3).

Из техногенных радионуклидов в приземном слое атмосферы Обнинска в 2023 г., как и в предыдущие годы, регулярно регистрировались 137 Cs, 90 Sr и 131 I (см. табл. 3 [3]).

Таблица 3 Среднемесячная объемная активность радионуклидов в воздухе г. Обнинска, Бк/м³ (данные НПО «Тайфун»)

Месяц	¹³⁷ Cs	, 10 ⁻⁷	⁹⁰ Sr,	10 ⁻⁷	¹³¹ I, 10 ⁻⁵		⁷ Be, 10 ⁻⁵	
ркээм	2023	2022	2023	2022	2023	2022	2023	2022
Январь	4,6	3,4))	15	61	248	116
Февраль	2,2	4,4			12	23	131	172
Март	3,4	2,3	0,28	0,70	16	9,1	190	265
Апрель	1,9	2,7	[30	44	286	267
Май	1,6	4,7			4,2	1,4	216	362
Июнь	2,4	3,4)	4,1	3,8	326	479
Июль	2,0	1,0])	2,9	8,2	274	180
Август	3,1	5,8			11	5,6	254	435
Сентябрь	5,8	3,3	 	0,35	4,6	3,0	417	143
Октябрь	6,9	2,8			3,9	6,1	127	142
Ноябрь	6,1	2,2			5,3	3,7	131	151
Декабрь	4,3	3,5			7,6	116	155	212
Среднее	3,7	3,3		0,53	9,7	24	230	244

Примечание: - - нет данных; нпо - ниже предела обнаружения.

Из таблицы видно, что среднегодовая объемная активность 137 Cs в Обнинске в 2023 г. составляла $3.7 \cdot 10^{-7}$ Бк/м³, что в 1.4 раза выше уровня средневзвешенного значения для Центра ETP за 2022 г. ($2.7 \cdot 10^{-7}$). Содержание 90 Sr в воздухе в первом полугодии 2022 г. (см. табл. 3) снизилось в 2.5 раза по сравнению с тем же периодом 2022 г. и не превышало средневзвешенное значение Центра ETP за 2022 г. ($0.37 \cdot 10^{-7}$ Бк/м³). Среднегодовые объемные активности 137 Cs и 90 Sr были на семь порядков ниже допустимой среднегодовой объемной активности (ДОА_{НАС}.) этих радионуклидов в соответствии с НРБ-99/2009 [4].

В 2023 г. в приземном слое атмосферы в центре Обнинска было зарегистрировано 107 случаев появления 131 I (в 2022г.–108, в 2021 г. – 109, в 2020 г. – 100 случаев за год). Среднегодовая объемная активность 131 I в воздухе Обнинска в 2023 г. снизилась в 2,5 раза и составила 9 7· $^{10^{-5}}$ Бк/м 3 (см. табл. 3), что на пять порядков ниже допустимой среднегодовой активности для 131 I. Максимальная объемная активность 131 I наблюдалась 15-16.03.2023 и составляла 2 0· $^{10^{-3}}$ Бк/м 3 , что на три порядка ниже допустимой среднегодовой активности для 131 I (ДОА_{НАС.} = 7,3 Бк/м 3 в соответствие с НРБ-99/2009).

Из естественных радионуклидов в приземном слое атмосферы Обнинска определялись 7 Ве и 40 К. Среднегодовая объемная активность 7 Ве в воздухе от года к году меняется в пределах одного порядка величины и в 2023 г. составляла 230·10⁻⁵ Бк/м³ (см. табл. 3). Объемная активность 40 К в 2023 г. изменялась в диапазоне (0,47–1,6)·10⁻⁵ Бк/м³ со среднегодовым значением 0,9·10⁻⁵ Бк/м³.

В целом, в 2023 г. радиационная обстановка на территории Калужской области была стабильной. Наблюдавшиеся в 2023 г. уровни радиоактивного загрязнения окружающей среды техногенными радионуклидами в ближней 10-км зоне РОО Обнинска были значительно ниже существующих нормативов. Однако местные РОО оказывают влияние на загрязнение атмосферы Обнинска ¹³¹I, отсутствующим в составе глобального радиоактивного фона.

Список литературы

- Распоряжение Правительства РФ от 14.09.2009 №1311-р с изменениями на 24 июня 2022 года «Об утверждении перечня организаций, эксплуатирующих особо радационно опасные и ядерно-опасные производства и объекты» [Электронный ресурс].— URL: http://docs.cntd.ru/document/902175518
- 2. Данные по радиоактивному загрязнению территории населенных пунктов Российской Федерации цезием-137, стронцием-90 и плутонием-239,240. Обнинск: ФГБУ «НПО «Тайфун», 2023. 228 с.
- 3. Радиационная обстановка на территории России и сопредельных государств в 2022 году. Ежегодник. Обнинск: ФГБУ «ВНИИГМИ-МЦД», 2023. –346 с.
- 4. Нормы радиационной безопасности (НРБ-99/2009): Санитарно-эпидемиологические правила и нормативы. СанПиН 2.6.1.2523-09. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 100 с.